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Abstract 

Polycaprolactone (PCL) is a PDA-approved biodegradable polymer with excellent 

biocompatibility and flexibility. My work has been designed to find out how different functional 

end groups in star-like PCL samples affect the surface properties (such as hydrophilicity, 

morphology) and bulk properties (such as thermal, mechanical, rheological properties, and 

crystallization), and consequently the behavior and functions of primary rat aortic smooth muscle 

cells (SMCs).  

I focused on the synthesis of PCL with different functional groups and their characterizations. In 

chapter 2, PCL samples with four or six hydroxyl end groups were synthesized with different 

molecular weights ranging from 8,000 to 30,000 g/mol [gram per mole]. The hydroxyl end 

groups in PCL were converted into carboxyl, methyl, amino, and acrylate groups, with 

conversion percentage confirmed by nuclear magnetic resonance (NMR) spectra. Thermal 

properties of these PCL samples were determined with a Differential Scanning Calorimeter 

(DSC). In chapter 3, the different spherulitic morphologies formed by 4-arm and 6-arm star-like 

PCL in isothermal crystallization were explored. In chapter 4, the rheological properties of linear 

and star-like polymers were determined by using a strain controlled rheometer, which aims to 

find out the dependence of viscosity on frequency and molecular weight. The rheological 

properties of star like polymers were compared with the linear ones. In chapter 5, cytotoxicity 

tests of the star-PCL samples using SMCs were performed, and cell study of SMC attachment, 

spreading, proliferation on the star-PCL samples with different functional groups were also 

performed. 
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1.1 Chemical and physical properties 

There are a number of biodegradable polymers having been used in the current times. Poly (ε-

caprolactone) (PCL) is an aliphatic polyester which has been found to be useful in the prosthetic, 

suture and also in many of drug deliveries
[1]

. The IUPAC name for the compound is (1,7)-

polyocepan-2-one, and also some other names such as 2-oxepenane homo polymer and 6-

Caprolactone polymer
[ 2 ]

. Its CAS number is 24980-41-4, and common abbreviation for the 

compound is PCL. Density of the compound is 1.145 g/Cm
3
, and melting point is 60ºC. They are 

found to exist at the standard state of 25ºC
[3]

. It has recently gained prominence in the current 

times owing to the biomaterial applications of these compounds
[ 4 ]

. They are relatively 

inexpensive products that are found to have degradable kinetics to suit specific anatomical sites
[5]

. 

This makes this compound widely useful. Rheology of the compound is found to have wide 

variety of uses as biomaterial
[6]

. The rheological study is to study the flow of mater in liquids or 

soft state. The plastic flow is found to be deforming based on the elasticity in response to the 

applied force
[7]

. The rheological behavior of the compounds was found to be pronounced when 

reacted with the extruded starch. This was the case when observed in the off-line capillary 

rheometer
[8]

. The power line model for the compounds was found to have appropriate correction 

factors. The consistency coefficient K for the starch was found to be significantly higher
[9]

. The 

Starch-PCL nano composite blends were found to have shear-thinning behavior
[10]

. This was 

found to have higher pseudo plasticity than did 100% PCL. The viscosity of the compounds was 

higher than that of the PCL composite
[11]

. 

These are some of notable features of the PCL. These components have been used for number of 

commercial applications. There is a need to synthesize the compounds to convert them into 

compounds that are viable. These have been explained in the subsequent section.  
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1.2 Synthesize of PCL 

The synthesis of PCL is formed by the ring-opening of polymerization of the cyclic monomer- 

caprolactone. Catalyst such as stannous octoate is used to catalyze the polymerization and is 

known to have the low molecular weight alcohol which is used to control the molecular weight 

of the polymers. There are different mechanisms that are used for the polymerization of the 

PCL
[12]

.  These are anionic, co-ordination and radical ions. The methods are known to affect the 

molecular weight, distribution of the molecules and end group composition
[13]

. The PCL is found 

to be a semi-crystalline polymer. The average molecular weight of the PCL compound varies 

between 3000 to 80000 g/mol. The PCL is soluble in the carbon tetrachloride, benzene, 

cyclohexane at room temperature
 [ 14]

, but has lower solubility in the acetone, ethyl acetate, 

acetonitrile
 [15]

, and is insoluble in alcohol or petroleum ether
[16]

. The PCL is blended with a 

number of other polymers to crack resistance
[17]

. Apart from this, the adhesion is used in the 

combination with the other polymers such as cellulose propionate, polylactic acid, polylactic 

acid-co-glycolic acid to increase the rate of absorption of the drug release from microcapsules
[18]

. 

This compatibility of the PCL with other polymers depends on the ratio of permeability of the 

delivery systems in contention
[ 19 ]

. Copolymers of the PCL is developed using many of 

monomers of the PVC, diglycolide, valerlactone to name a few
[20]

. The physical and mechanical 

properties of many of the degradable polymers are used and have been investigated.  
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1.3 Applications of PCL and development. 

PCL is a semicrytalline polyester and has numerous uses
[21]

. The in vivo degradation rate and the 

drug permeability are found to be very low. The Capronor® is used as a commercial 

contraceptive that is used for the delivery of the levonorgestrel
[22]

. This has been in use for more 

than 25 years in market
[23]

. There are a number of researches that have been undertaken in the 

current times to address the micro and nanometer scale drug delivery
 [24]

. Degradation is an issue 

for the PCL to be used in a wider scale
[ 25 ]

. Tissue engineering implication of the PCL is 

numerous. It has low tensile strength and higher elongation
[26]

. It is considered as a good elastic 

biomaterial. The PCL allows for the scaffolds to be formed and is adhered to the microspheres, 

electron fibers
[27]

. It works through the porous networks that are created by porous leaching
[28]

. 

The PCL composite is widely used in various tissue engineering applications. It is particularly 

used in the engineering of the scaffold for regenerating ligament, bones or skin or even vascular 

tissues
[29]

. The recent advancement of the PCL hybrid scaffold is based on the interfacial tissue 

engineering
[30]

. There are many scaffold regions that are seeded with the appropriate cells that 

have been harvested from the ligament or the cartilage sources
[31]

. There are many complex 

tissues like interfaced where the bone-ligament interface is found to be regenerated.  

Adhesions are unwanted but unavoidable consequence of the surgery especially after trauma 

surgery. Many researchers have undertaken to address this issue in the healthcare system
[32]

. The 

PCL films served to reduce the postoperative abdominal adhesions that are found in the 

abdominal wall model
[33]

. The film fabrication method is easy to perform. Currently, in the 

animal studies, it has been found that the PCL films have fewer adhesions than the seprafilm that 

is used
[34]

. This shows that PCL has immense potential to reduce the formation of abdominal 

adhesions. This potential has been proven in the rat abdominal model
[35]

. 
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The PCL is degraded through hydrolysis reaction
[36]

. The ester linkages in the physiological 

conditions are found to be useful. There is a great deal of attention that has been given to the 

implantable biomaterials. This has been found to have immense use in the long term implantable 

devices.  

PCL has been approved by the FDA for its uses in the human body. Especially, the use of the 

PCL in formation of the hydrophobic block of the amphiphilic synthetic block copolymers has 

immense use in the pharmacological applications. Varieties of drugs are currently encapsulated 

with the PCL beads. This has been used for controlled release and to targeted drug delivery 

systems. There are major impurities that are found in the medical grades of PCL such as toluene 

and tin. 

In the areas of dentistry, it is used as a component in root canal fillings, and also used for the 

retreatment purposes. They are made to reach with the heat and dissolved in the solvents such as 

chloroform. It is also degradable. Owing to this, it is more conducive for the areas of dentistry. 

However, this is still in the process of development
[37]

. 

1.4 The Influence of Surface properties on cell behaviors  

Cell cultures are treated with the polylysine or basic polymers to cause the cell to adhere tightly 

membrane. The growth is then improved in this process. Collagen or gelatin is found to improve 

this behavior slightly. The natural and synthetic polymers are in excess of the basic groups. The 

pH level is balanced for its use
[38]

. 

Research has indicated that the collagen-r-PCL blend is used for novel functional biomimetic 

nanofibers that are used for achieving the integration between the cells and scaffolds for unique 

tissue engineering applications
[39]

. 
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For tissue bone regeneration, the PCL was used as an important ingredient
[40]

. The developed 

scaffold has unique and superior physical, mechanical, biological properties to make them useful 

in the bone tissue regeneration
 [41]

. 

The surface of nanoparticles can be chemically modified to improve its compatibilities with the 

matrix. The N-Octadecyl isocyanate was used as a grafting agent. The PCL was used in the 

nanocomposite film that was reinforced with the sial whiskers that was produced by the film 

casting
[42]

. There were significant differences that was reporting according to the nature of the 

nanoparticle. It was also found that the chemical treatment improves properties of the nano 

composite by altering thermal behavior of the compounds
[43]

. 

There was copolymerization of the lactide with the lactone kind of monomers. The functional 

group of the compound was found to be malic acid. The copolymerization of the lactide with the 

macromolecular monomer of dextran was analyzed. The cell culture of the technology proved to 

be efficient in the bulk and surface modification of the PLA in the tissue engineering
[44]

. There is 

influence of hydrophilicity and roughness of the nanofiber meshes (NFMs) for biological 

performance of the compound
[45]

. Despite the morphological similarity the natural extracellular 

matrix, they are found to contribute to the cellular performance and should be optimized
[46].  

The cell-biomaterial interaction could be influenced by the surface mechanics, surface 

morphologies and surface chemistry.  

Surface mechanics, surface morphological and chemical features are three major aspects that 

could influence the cell-biomaterial interaction 
[47-49]

. Smooth muscles(SMCs) and bone cells 

prefer to attach on surfaces with higher stiffness. The surface roughness could influence cell 

attachment, proliferation, migration, and gene expression and cell attachment and proliferation 

could be enhanced on spherulitic polymer surfaces because of the surface roughness 
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increasement
[50-54]

. The functional groups on the surface could influence cell attachment, 

proliferation by changing the hydrophilicity and protein adsorption of the surface
 [55,56]. 

In the next chapters, PCL with different functional groups will be synthesized and the functional 

group influence on SMC behavior will be studied. 
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Chapter II Synthesis and Characterization of the Star-PCL Samples 
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2.1 Introduction 

Poly(ɛ-caprolactone) (PCL) with four or six hydroxyl end groups were synthesized with different 

molecular weights ranging from 8,000 to 30,000 g/mol using ring-opening polymerization of ε-

caprolactone (CL) at the presence of an initiator of pentaerythritol or dipentaerythritol, 

respectively. The molecular weights were controlled by changing the ratio between the initiator 

and monomer. Based on the hydroxyl group samples, the hydroxyl end groups in PCL were 

changed into carboxyl, methyl, amino, and acrylate groups, with conversion rates confirmed by 

the NMR spectra. Fifty samples were synthesized in total. The molecular weight and PDI were 

determined by GPC. The thermal properties of these PCL samples were determined on a 

Differential Scanning Calorimeter (DSC). The surface hydrophilicity of the flat disks of the 

samples was determined by the contact angle test. 

2.2 Synthesis of PCL 

Five PCL samples with four hydroxyl groups(4-arm PCL-OH) and five samples with six 

hydroxyl groups(6-arm PCL-OH) were synthesized, and based on the PCL sample, different 

functional groups were grafted. 

2.2.1 Synthesis of PCL with hydroxyl groups. 

The synthesis of PCL triols were reported in our group previously [1,2]. PCL with hydroxyl end 

groups were synthesized via the ring-polymerization of caprolactone at the presence of initiator 

and catalyst, Sn(Oct)2. In order to get PCL with four or six hydroxyl groups, pentaerythritol or 

dipentaerythritol were used as the initiator. The mixture of caprolactone, Sn(Oct)2 and 

pentaerythritol or dipentaerythritol was stirred with a magnetic stir and the reaction temperature 

was 120
o
C under nitrogen for 12 h. The molecular weights were controlled by changing the ratio 

between CL and OH groups. The procedures are shown in Figure 2-1. 
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Figure 2-1 The scheme of 4-arm and 6-arm PCL-OH synthesis procedure 

2.2.2 The grafting of acrylate groups 

The synthesize of PCLTA were also reported in our group previously [1-3]. In order to get 

acrylate terminated PCL, acryloyl chloride was used for the grafting. Potassium carbonate 

(K2CO3) was used as the proton scavenger. Methylene chloride was used as the solvent. The 

molar ratio between hydroxyl groups, acryloyl chloride and K2CO3 is about 1:1:1. Potassium 

carbonate was dried in the vacuum drier for 12h and methylene chloride was dried over calcium 

hydride before using for the reaction. After the reaction under nitrogen at room temperature for 

24h, the mixture was precipitated in diethyl ether. The procedures are shown in Figure 2-2. 

 

 

Figure 2-2 The scheme of acrylate group end-capping procedure 
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2.2.3 The grafting of methyl groups 

The procedure to get methyl functional groups grafted based on hydroxyl groups was similar to 

that to get acrylate end groups, acetyl chloride was used to get the methyl groups end-capping, 

and K2CO3 was used as the proton scavenger. The molar ratio between hydroxyl groups, acetyl 

chloride and K2CO3 is about 1:1:1. Before the reaction happened under nitrogen at room 

temperature for 24 h, potassium carbonate was dried in the vacuum drier for 12 h and methylene 

chloride was dried over calcium hydride. After the reaction, the mixture was precipitated in 

diethyl ether. The procedures are shown in Figure 2-3 

 

Figure 2-3 The scheme of Methyl group end-capping procedure 

2.2.4 The grafting of carboxyl groups 

The way to get carboxyl functional groups grafted based on hydroxyl group was reported in 

Lee’s group previously [4].
 
For the preparation of carboxyl end group samples, methylene 

chloride solution of PCL-OH and succinic anhydride, 4-Dimethylaminopyridne (DMAP) was 

added. The molar ratio of hydroxyl groups, DMAP and succinic anhydride is 1:1:1. The reaction 

happened under nitrogen at room temperature for 24 h. The product, PCL-COOH was isolated by 

precipitation from the methylene chloride into petroleum ether and then dried in the vacuum 

dryer at 25
o
C. The procedures are shown in Figure 2-4. 
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Figure 2-4 The scheme of Carboxyl group end-capping procedure 

2.2.5. The grafting of amino groups 

It was reported previously on how to convert one hydroxyl into amino end groups [5]. In a two- 

step procedure, the hydroxyl groups were firstly reacted with 4-nitrophenyl chloroformate to get 

oxy-nitrophenoxy end groups, and then the oxy-nitrophenoxy end groups further reacted with 

diamine butane, and thus, the amino group end-capping was achieved. The procedures are shown 

in Figure 2-5. 

 

 

Figure 2-5 The scheme of amino group end-capping procedure 

It is an easy way to achieve the amino group convention, however, this method could not be used 

in my synthesis because there are multiple reactive hydroxyl groups, and as a result, a well 

crosslinked structure formed in the second step. In order to avoid the crosslinkage, tert-

butyloxycarbonyl protecting group (N-BOC group) was introduced, which allows only one 

amino group converting to the N-Boc group in the second step. In this way, only one amino end 

group exposed to the environment and could react with the hydroxyl group. After the N-Boc 

groups were grafted, trifluoroacetic acid (TFA) was used for the deprotection. After the 

deprotecion, the mixture was washed by K2CO3 solution to get rid of TFA. A similar synthesize 
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Figure 2-6 The scheme of N-Boc protection procedure to get amino group end-capping 

using N-Fmoc group as the protection was talked about in Michele's group [6]. The scheme of 

the procedure is shown in Figure 2-6. 

2.3 Characterization of PCL samples 

Molecular weights of the synthesized samples were determined using Gel permeation 

chromatography (GPC) and structures of the molecules were determined by using ATR and 

NMR. Based on the NMR spectra, conversion rates were calculated. Thermal properties of these 

PCL samples were determined on a Differential Scanning Calorimeter (DSC). Surface 

hydrophilicities of the flat disks prepared by the polymers were determined by contact angle test. 

2.3.1 Molecular weight and PDI determined by GPC 

Gel permeation chromatography (GPC) was performed at room temperature using a GPC system 

(HLC-83200GPC, TOSOH Biosciences LLC, Tokyo, Japan) to determine the molecular weight 

and polydispersity index (PDI) of PCL samples. Tetrahydrofuran (THF) was the used as the 
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solvent and monodisperse polystyrene samples were used for standard calibration. Cirrus 

GPC/SEC software (Agilent Technologies, Santa Clara, CA) was used for the data processing. 

2.3.2 Chemical structure determined by ATR 

Chemical structures were determined by using spectra Attenuated Total Reflectance (ATR) and 

1
H Nuclear Magnetic resonance (

1
H NMR).  

ATR is a infrared spectroscopy like fourier transform infrared spectroscopy (FTIR), but it 

enabled samples to be tested in a solid state. The ATR spectra were collected with a Perkin 

Elmer Spectrum Spotlight 300 spectrometer with diamond Attenuated Total Reflectance. 

The FTIR-ATR spectra of 4-arm and 6-arm PCL-OH samples are shown in Figure 2-7. 

The absorption peaks at 2950 and 2850 cm
-1

 are assigned to asymmetric and symmetric 

stretching modes of methylene groups (-CH2-), and the 1740 cm
-1 

is assigned to vibration of –

COOH groups. The FTIR-ATR tests on other samples were also performed; however, compared 

with the long chain, the peaks that correspond to the functional groups were too weak to observe.  
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Figure 2-7 FTIR-ATR spectra of (a) 4-arm PCL-OH and (b) 6-arm PCL-OH samples 
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It was reported in the literature that the –CH=CH2 peaks were already very weak when the 

molecular weight of PCLDA is 2000 [1].Compared with the weak characteristic peaks on the 

FTIR-ATR spectra curves, the peaks that correspond to the functional groups could be easily 

seen on the 
1
H NMR spectra curves. 

2.3.3 Chemical structures and synthesis conversion ratios determined by 
1
H NMR.  

Nuclear Magnetic Resonance (
1
H NMR) was carried out with a Varian Mercury 300 

spectrometer (Agilent Technologies, Santa Clara, CA). CDCl3 was used as the solvent in the 

measurement. Software MestReNoVa was used to analyze the 
1
H NMR curves and calculate the 

conversion ratio. 

 

Figure 2-8 Chemical structures of the synthesized polymers 
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The chemical structures are shown in Figure 2-8 and the 
1
H NMR spectra are shown in Figure 2-

9, all the corresponding protons are labeled and all the chemical shifts could be observed in the  

1
H NMR spectra. 

For the PCL-COOH NMR spectra, the resonance at 2.62 ppm in the NMR spectra demonstrates 

the -CH2CH2- of terminated carboxyl group, which was reported in Wang's work
 
[7]. For the 

PCL-CH3 NMR spectra, the peak at 2.02 ppm indicates the -CH3 structure. For the PCL-acrylate 

samples, the peaks ranging from 5.7 to 6.5 ppm demonstrated vinyl groups (-CH=CH-) in the 

chemical structure, in agreement with the literature reported
 
[1]. 

The functional group conversion ratio could be determined by 
1
H NMR spectra. When the 

conversion ratio is 100%, there will be no peak f for functional group terminated PCL. However, 

there were still weak peaks on the PCL-CH3, PCL-COOH and PCL-acrylate 
1
H NMR spectra 

curves. By comparing the peak f and the functional group corresponded peaks, all the conversion 

ratios of PCL-CH3, PCL-COOH and PCL-acrylate samples could be calculated, which are shown 

in Table 2-1. Most conversion ratios for PCL-COOH samples were above 90%. The conversion 

ratios for PCL-CH3 and PCL-acrylate samples were ranging from 80% to 90%. 

The synthesis of PCL-NH2 is a three step procedure. In the first step, the hydroxyl group reacted 

with 4-Nitrophenyl chloroformate at room temperature. Triethylamine was used as the proton 

scavenger in this step. In the second step, the PCL-oxy-nitrophenoxy reacted with N-boc and got 

N-boc group terminated PCL. The N-boc groups were deprotected by using trifluoroacetic acid 

(TFA) methylene chloride solution in the last step. The mixture was washed with aqueous 

potassium carbonate then water and dried under vacuum. The scheme of the synthesis procedure, 

the structures of chemicals and the peak shifting are shown in Figure 2-10. 

In the first step, K2CO3 was first used as the proton scavenger, but the conversion ratios were 

very low. Then the triethylamine was used as the proton scavenger and the conversion ratios   
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Figure 2-9 (a) 
1
H NMR spectra of 4-arm PCL-OH, PCL-CH3 and PCL-COOH samples (b) 

1
H 

NMR spectra of 6-arm PCL-OH, PCL-CH3 and PCL-COOH samples (c) 
1
H NMR spectra of 4-

arm PCL-acrylate samples (d) 
1
H NMR spectra of 6-arm PCL-acrylate samples (e) 

1
H NMR 

spectra of 4-arm PCL-NH2 samples (f) 
1
H NMR spectra of 6-arm PCL-NH2 samples. 
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turned out to be almost 100%. In the second step, the conversion ratios were also very high.  

In the third step, we could see the peak k, which correspond to the N-boc groups, disappeared. 

However, since the overlapped peaks in the curves, the accurate conversion ratio could not be 

calculated based on the NMR spectra. 

2.3.4 Thermal properties determined by DSC 

Thermal properties of 4-arm and 6-arm PCL samples with different functional end groups were 

determined using a DSC system in a nitrogen atmosphere. All samples were heated from room 
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Figure 2-10 The procedure to get PCL-NH2 and the 
1
H NMR peak shifting 
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temperature to 100
o
C and then cooled to -60

o
C at the rate of -10

o
C/min in order to get same 

thermal history. After the pretreatment, the samples were heated from 25°C to 100°C then cooled 

to -60°C at a rate of 10 °C/min. Universal Analysis 2000 software was used to analyze the data.  

The DSC curves are shown in Figure 2-11. From the heating curves we could get the melting 

temperature of the samples and from the cooling curve we could get the heat of fusion, which 

could be used to calculate the crystallinity according to the equation  

% / ( ) 135 /c c

m PCL m mcrystallinity H H Where H J g    　  

From the Figure 2-11 we could see that most samples have two melting temperature peaks, 

which corresponded to the different arm lengths in PCL precursors and PCL samples [1,8]. 

With the increase of molecular weight (Mn), the crystallization temperature and melting 

temperature increased a little bit. However, the crystallinity did not change a lot. When different 

functional groups were compared, the carboxyl group decreased the crystalline temperature 

significantly; the other end groups did not influence the thermal properties much. 

2.3.5 Hydrophilicity 

The wettability of the PCL surfaces could be influence by different functional groups on the 

surface. Hydrophilicity of the samples was determined by contact angle test on flat samples 

prepared in a hot press. At least three fluids are needed to determine the surface free energy 

according to the reported method. Pure water, diiodomethane, and ethylene glycol were used in 

my work. Contact angles were measured with a Ramé-Hart NRC C. A. goniometer (model 100-

00-230) at room temperature [9-11]. The contact angles were not recorded until the fluid droplet 

was stable for more than 30s. The Contact angles of the three fluids on flat surfaces are shown in 

Figure 2-12.   
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Figure 2-11 (a) DSC curves of 4-arm PCL-OH samples (b) DSC curves of 6-arm PCL-OH 

samples (c) DSC curves of 4-arm PCL-COOH samples (d) DSC curves of 6-arm PCL-COOH 

samples (e) DSC curves of 4-arm PCL-CH3 samples (f) DSC curves of 6-arm PCL samples (g) 

DSC curves of 4-arm PCL-acrylate samples (h) DSC curves of 6-arm PCL-acrylate samples (i) 

DSC curves of 4-arm PCL-NH2 samples (j) DSC curves of 6-arm PCL-NH2 samples. 
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From the figure we could see that with the increase of molecular weight, water and ethylene 

glycol contact angles increase a little bit. There is an obvious increase on the diiodomethane 

contact angles when the molecular weights were increased. The PCL-COOH samples have a 

much lower contact angle compared with others when all the three fluids were used because the 

PCL-COOH samples are more hydrophilic. The PCL-NH2 samples have higher contact angles 

compared with PCL-OH samples, but not significantly.  

2.4 Results and conclusion 

Based on the GPC, DSC and NMR, the Molecular weight, PDI, conversion ratio and thermal 

properties were determined and all the results are shown in the Table 2-1. 
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Figure 2-12 (a) water contact angle, (b) diiodomethane contact angle and (c) ethylene glycol 

contact angles on flat polymer surface.  
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From the table we could see the PDI of most samples are about 1.1 except for some high 

molecular weight samples with the PDI of ~1.3. 

The conversion ratios for carboxyl groups were about 90%, which was higher than those of 

methyl and acrylate groups. The conversion rate could be improved when triethylamine were 

used as proton scavenger, however, the product turned to be light yellow because of colorization 

and potential toxicity from the side reaction between TEA and acryloyl chloride, which was 

reported in our group previously [1]. 

The crystallization temperature and melting temperature slightly increased when molecular 

weight increased. The crystallinity did not change much in the molecular weight range. 

Compared with other samples, the carboxyl end-capping decreased the crystalline temperature 

significantly; the other end groups have little effects on the thermal properties. 

Flat PCL samples with higher molecular weight have higher contact angles when the three fluids 

were used. Samples with carboxyl groups have lower contact angles compared with the other 

samples, making the flat surfaces more hydrophilic. X-ray photoelectron spectroscopy (XPS) 

could be used to further determine the density of functional groups on the flat PCL surfaces. 

In the next chapters, these samples will be used for further studies on surface morphologies, 

rheology properties  and cell behaviors.  
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Table 2-1 Molecular weight characteristics and thermal properties of the functional groups end-

capping PCL samples. 

Polymer 
Mn 

(g/mol) 

Mw 

(g/mol) 
PDI CR 

Thermal properties 

Tc (°C) Tm,1(°C) Tm,2(°C) ΔHm (J/g) χc (%) 

PCL-OH 4-8K  8450 9680 1.10  16.60 41.10 46.50 77.80 58.50 

 4-10K  9250 10300 1.10  21.00 45.80 49.40 76.60 57.50 

 4-14K 14200 15700 1.10  24.20 49.70 52.80 75.30 56.30 

 4-19K 19400 22900 1.10  25.00 51.60 54.30 80.50 60.0 

 4-25K 28100 36600 1.30  31.40 53.60 55.80 78.50 58.50 

 6-10K 9990 10900 1.10  15.10 39.80 44.80 76.20 57.90 

 6-13K 12800 14300 1.10  21.80 45.10 48.30 75.30 56.80 

 6-15K 15200 16600 1.09  26.71 49.08 51.95 74.53 55.21 

 6-20K 17900 20500 1.14  30.78 51.79 54.61 74.99 55.55 

 6-30K 29600 37700 1.27  29.93 53.10 55.47 77.85 57.67 

PCL- 4-8K 7390 8730 1.18 0.82 19.22 40.00 46.30 72.90 55.00 

Acrylate 4-10K 9610 10600 1.10 0.85 20.40 40.40 46.30 73.10 55.00 

 4-14K 14700 16700 1.13 0.82 20.40 44.10 49.40 75.50 56.70 

 4-19K 19900 23700 1.19 0.91 30.00 50.00 53.00 72.80 54.40 

 4-25K 25400 34500 1.36 0.85 35.70 53.20 54.00 72.60 54.10 

 6-10K 10200 11200 1.10 0.78 34.00 54.50 56.60 70.50 52.40 

 6-13K 13600 14700 1.09 0.79 17.80 39.10 45.60 65.30 49.60 

 6-15K 14800 16800 1.14 0.81 20.40 43.90 48.90 70.10 53.00 

 6-20K 21000 24800 1.18 0.85 24.30 47.80 51.80 74.10 55.70 

 6-30K 30600 38800 1.27 0.85 30.50 54.00 55.90 67.30 50.30 

PCL- 4-8K 7880 8730 1.11 0.82 3.320 34.54 45.56 62.31 46.16 

COOH 4-10K 9460 10600 1.10 0.81 15.92 40.22 46.45 69.69 51.62 

 4-14K 13970 15950 1.14 0.89 17.87 45.45 50.81 72.56 53.75 

 4-19K 19800 22900 1.16 0.90 24.82 50.08 53.68 74.52 55.20 

 4-25K 27200 35300 1.30 0.90 26.73 51.36 54.64 70.95 52.56 

 6-10K 9900 11400 1.15 0.96 -6.28 41.57   31.05 23.00 

 6-13K 12800 14300 1.11 0.88 14.33 41.11 47.48 63.92 47.35 

 6-15K 15300 16800 1.10 0.90 20.16 45.53 50.7 70.25 52.04 

 6-20K 19800 24400 1.24 0.91 24.87 50.44 53.53 67.32 49.87 

 6-30K 29900 36600 1.23 0.93 27.89 53.32 55.8 69.78 51.69 

PCL-CH3 4-8K 8100 8900 1.10 0.87 15.41 39.91 45.98 76.68 56.80 

 4-10K 9500 10600 1.10 0.82 18.44 42.87 47.82 75.20 55.70 

 4-14K 14800 16500 1.11 0.81 27.86 48.81 52.13 74.38 55.10 

 4-19K 19600 23400 1.20 0.85 20.79 50.97 54.94 76.84 56.92 

 4-25K 27300 37000 1.36 0.78 28.47 53.80 56.59 73.38 54.36 

 6-10K 9800 10800 1.10 0.80 10.31 37.41 44.02 69.12 51.20 

 6-13K 12600 14000 1.10 0.85 13.11 43.41 48.49 70.82 52.46 

 6-15K 14500 17200 1.14 0.81 24.83 47.50 51.07 73.95 54.78 

 6-20K 21600 25200 1.16 0.82 26.95 50.00 53.09 73.28 54.28 

 6-30K 31100 36600 1.17 0.86 32.93 53.55 55.16 73.36 54.34 

PCL-NH2 4-10K 10200 11200 1.10  21.96 43.83 48.30 74.58 55.24 

 4-14K 12800 14800 1.13  23.89 45.28 50.18 67.10 49.70 

 4-19K 20100 23900 1.19  25.29 51.23 54.03 71.54 52.99 

 4-25K 26700 37400 1.40  26.96 53.51 56.36 73.89 54.73 

 6-10K 9600 10600 1.10  3.27 29.70 39.07 52.27 38.72 

 6-13K 12900 14000 1.10  17.46 42.61 47.38 71.00 52.59 

 6-15K 14800 16800 1.13  21.45 42.85 48.77 78.68 58.28 

 6-20K 20600 25000 1.18  27.29 47.80 51.44 79.39 58.81 

 6-30K 30900 35600 1.15  31.35 49.22  73.70 54.59 
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Chapter III Surface Morphologies of the Crystallized Star-PCL Samples 
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3.1 Introduction 

Surface mechanics, surface chemistry and morphological features are three major aspects that 

could influence the cell-biomaterial interaction [1-3]. The surface roughness could influence cell 

attachment, proliferation, migration, and gene expression and cell attachment and proliferation 

could be enhanced on spherulitic polymer surfaces because of the surface roughness 

increasement [4-8]. Most polymers are semi-crystalline, the spherulite contains amorphous part 

and crystallized polymer lamellar. The polarized optical microscopy (POM) is often used to 

observe spherulites and the Maltese cross could be observed between the crossed nicols since 

spherulites are optically anisotropic objects [9]. The impeded polymer crystalline rate and strong 

surface stress lead to the twisting of the crystallized polymer lamellar and result in the formation 

of banded structure [10,11].   

The following research explores the different spherulitic morphologies formed by 4-arm and 6-

arm star-like poly(ε-caprolactone) (PCL) in isothermal crystallization. Specifically, we used the 

samples of PCL with the functional end groups of–OH, -CH3, -COOH, -CH=CH2 and –NH2 to 

test the effects of molecular weight, crystallization temperature (Tc), different end groups and 

different substrate. 

POM was used to collect images of the spherulites for each sample that were then analyzed using 

the IC Measure software. Results from each test showed that the increase of Tc increased 

crystallization time and spherulite area. The samples of PCL with the functional end groups of -

COOH and -OH were seen to form a layering morphology over a certain Tc range.  Because of 

this layering, the film was ununiformed, but through an increase in Tm and film thickness, we 

were able to minimize the layers found in the sample. In addition, -CH3 and -CH=CH2 samples 

were able to form uniform banded spherulites over a Tc  range close to the Tm of the polymer. The 
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PCL was also crystallized on different substrates like glass, Tefflon and crosslinked PCLTA, and 

results showed that the samples formed very good spherulites only on the glass substrate. 

3.2 Experiment section 

3.2.1 Material used in the experiment 

4-arm 25K PCL samples with functional end groups of –OH, -CH3, -COOH, -CH=CH2, and –

NH2 were used to determine how the functional groups and crystalline temperature could affect 

the crystalline morphology.  

6-arm 20K and 6-arm 30K were also used to determine how the molecular weight could 

influence crystalline morphology. 

55K PCL sample (purchased from the Sigma-Aldrich Co.) was used to study how substrate could 

influence crystalline morphology. The 10K photo-crosslinked poly(ε-caprolactone) triacrylate 

(PCLTA) was synthesized according to a reported procedure [12]. 

3.2.2 Sample preparation of spin coated thin films. 

Solutions of the PCL samples were prepared by dissolving 0.5g of polymer in 5ml of methylene 

chloride. About 150 microliters of the polymer solution was dropped onto a round glass cover-

slip (15mm, diameter) and was spin-coated at a spin rate of 1000 rpm for 20 seconds at room 

temperature. After the polymer films were fully dried, the polymers were melted on a hot stage at 

80
o
C for 10min and quickly transferred to a hot stage with a specific temperature. Room 

temperature, 37, 45 and 50
o
C tests were performed to see how the temperature could influence 

crystalline morphology. 

POM pictures were taken when the growing of crystalline structure stops. 
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3.2.3 Sample preparation of crosslinked PCLTA 

Photo-initiator phenyl bis(2,4,6-trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 819) 

was supplied by Ciba Specialty Chemicals (Tarrytown, NY). PCLTA and BAPO were dissolved 

in distilled THF at 50 and 0.5 mg/mL, respectively. The PCLTA/BAPO solution was cast on a 

clean glass slide and covered with another glass slide for preparing thin PCLTA films (thickness, 

~ 1mm) with flat surfaces, followed by gradual drying in air. After the films were dried, they 

were exposed to UV light (λ= 315-380 nm) for 30 min. 

3.3 Results and discussion 

4 arm -25k Room Temp. 37  C 45⁰C 50⁰C

CH3

COOH

OH

Double bond

NH2

 

Figure 3-1 Crystalline morphologies of 4-arm 20K samples crystallized at different temperature. 
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From images in figure 3-1 we can see that at room temperature, only very tiny spherulites 

formed; with increase of Tc, the speed of crystallization decreased, and larger spherulites formed. 

A problem for the -OH and -COOH groups was that the spherulites could not fully cover the 

glass slides and multilayers could also be observed. Because of this layering, the formed film 

was ununiformed, but through an increase of the heating plate (where the polymer film were 

heated before transferred to the hot stage) temperature and film thickness, we were able to 

minimize the layers found in the sample. -CH3 and -CH=CH2 samples were able to form uniform 

banded spherulites when the crystalline temperature was close to melting temperature. Banded 

structures were not found in the -NH2 group samples.  

 

37⁰C 45⁰C 50⁰C

CH3

COOH

OH

Double 

bond

Room temp.

 

Figure 3-2 Crystalline morphologies of 6-arm 20K samples crystallized at different temperature  
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Further studies were performed by using 6-arm 20K and 6-arm 30K samples to investigate if the 

banded structure could form on the same situation. The POM images were shown in Figure 3-2 

and Figure 3-3. At the same time, the morphologies difference formed by samples with different 

molecular weights was compared. 

From the images we can see that the when PCL-CH3 and PCL-acrylate samples were 

crystallized at 50
o
C, banded spherilites were observed. PCL-COOH samples formed very good, 

large spherilites when crystallized at 50
o
C, but still multi layers were formed. 

 

 

Room temp. 37⁰C 45⁰C 50⁰C

CH3

COOH

OH

Double 

bond

 

Figure 3-3 Crystalline morphology of 6-arm 30K samples crystallized at different temperature 

OH 

CH3 
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Comparing with the 6-arm 20K and 6-arm 30K samples, the 6-arm 20K samples formed larger 

and better spherulites. This could attribute to the melting temperature difference. The melting 

temperatures of 6-arm 20K samples are lower than those of the 6-arm 30K samples. As a result, 

when the crystallization happened at a same temperature which is close to the melting 

temperature, Tm-Tc is smaller for 6-arm 20K samples. The crystalline structure for 6-arm 20K 

samples were growing slower in comparison with 6-arm 30K samples but larger spherulites were 

formed at last.  

The POM images of crystalline morphologies of 55k PCL samples on glass, Tefflon and 

Crosslinked PCLTA substrates were shown in Figure 3-4.  

 

Glass

Teflon

PCL-TH

47℃ 50℃ 53℃  

Figure 3-4 Crystalline morphology of 55K PCL samples on different substrate. 

PCL-TA 
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From the images we can see large spherulites could only be observed when the samples were 

crystallized on the glass substrate. 

The spherulite were not observed when PCL samples were crystallized on Teflon and PCL-TA 

substrates, this could either because no spherulites formed or the films were too thick and 

blocked the light since the samples were prepared by drop coating. 

3.4 Conclusion 

In this chapter, different functional group end-capping PCL samples were used to study the 

crystalline morphologies at different temperature and the crystalline morphologies were observed 

by using POM. Banded structure were observed when the PCL-CH3 and PCL-acrylate samples 

were crystallized at 50
o
C.  

When PCl were crystallized on different substrates, no banded structure were observed. Different 

substrates could influence the crystallization speed of the samples, this part worth further study 

to find out how could the substrate influence the crystallization.  

Crystallization kinetics could be studied by taking the images every specific time for further 

understanding the crystallinity procedure. Atomic force microscope (AFM) could also be used to 

further study the roughness of the crystallized surface. 
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Chapter IV Melt Rheological Properties of Linear and Star-PCL 

Samples 
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4.1 Introduction 

PCL is an FDA-approved biodegradable polymer with good biocompatibility. It can be degraded 

by hydrolysis of its ester linkages in physiological conditions and has received extensive 

attention such as being used as a temporary joint spacer and tissue-engineered skin [1,2].
 

Rheology behavior plays a very important role in polymer processing, operations and the 

viscoelasticity of polymer melts are mainly influenced by the molecular weight and distribution, 

temperature, and shear rate. Modeling the change in viscoelastic properties has great importance 

in predicting the flow behavior in different melt processing conditions. Therefore, it is necessary 

to have a better understanding on the detailed rheological properties of PCL
 
[3].    

Rheology is known as the study of deformation and flow of materials. Specifically flow is 

analyzed when forces act upon the material causing it to flow. Rheology and fluid mechanics are 

share similar concepts; however, rheology is concerned with all states of matter including solids, 

liquids, and gases whereas, fluid mechanics is only concerned with liquids. Also rheology studies 

focus on macroscopic properties but not molecular structure. Rheology is important to polymer 

analysis as it allows us to decipher viscoelastic properties of polymers which ultimately leads to 

mathematical modeling of polymers. Rheology is geared towards examining and studying 

“nonclassical” theories of viscosity, elasticity and non-Newtonian fluid mechanics. Rheology is 

effectively used to generate theories of which are not accurately described by classical 

mechanics. In order to study rheology, a rheometer is used as it effectively characterizes the flow 

of liquids, suspensions, and slurrys with a response to applied external forces. There are several 

types of rheometers but, they can be classified into two categories: one being rotational/shear 

rheometers which are used to apply extensional stress and strain to materials and another one 

being extensional rheometers which are used to apply extensional stress and strain to materials.  
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Rheometers can also be used to determine pseudoplasticity where shear thickening and shear 

thinning occurs in these materials. It is known that polymers show a strong dependence of 

viscoelastic properties on temperature. Due to this, the elastic modulus is usually influenced by 

load time and response time. With these factors in mind, the time-temperature superposition is an 

important concept to consider as it implies that the response time function of elastic moduli at 

varied temperatures resembles the same shape of the same functions of adjacent temperatures. 

The rheological properties of 4-arm and 6-arm PCL-OH with different molecular weights were 

determined by using the strain-controlled rheometer (RDS-w, Theometric Scientific). This work 

focused on understanding the zero shear viscosity dependence on temperature, molecular weight 

and shear rate. And the results were compared with linear ones. 

4.2 Experiment 

4.2.1 Material used in the experiment 

Except for the four and six arm PCL-OH that were synthesized in the previous work, additional 

fifteen linear samples with Mw ranging from 1K to 773K were used in the experiment. 

PCL144k (Mw = 144k g/mol), PCL69k, PCL24k, PCL5.2k, PCL3.3k and PCL1.2k were 

purchased from the Sigma-Aldrich. Other linear PCL samples were synthesized via the ring-

opening polymerization in our lab previously. 

4.2.2 Thermal characterization 

Thermal properties of the linear PCL samples were determined by using DSC measurements on a 

Perkin Elmer Diamond differential scanning calorimeter in a nitrogen atmosphere. Samples were 

first heated from room temperature to 100
o
C and then cooled down to -90

o
C at a cooling rate of 

5
o
C/min. After the pretreatment to get the same thermal history, a following heating run was 

performed from -90
o
C to 100

o
C at a heating rate of 10

o
C/min. DSC scans for the last cooling and 



www.manaraa.com

47 

 

 

heating runs were recorded for analysis and the results were analyzed by the METTLER 

software in the instrument. 

4.2.3 Rheological properties 

The rheological properties of the samples were performed at 60, 80, 100, 120 and 140
o
C with a 

small strain (about 1%) with an 8 mm diameter parallel plate flow cell and a gap of about 0.5mm. 

While performing the experiment dynamic frequency sweep mode was used in order to measure 

the storage modulus (G’) and the loss modulus (G”) and the zero shear viscosity was measured 

from the Newtonian region at low frequencies with the frequency range of 0.5-100rad/s. 

4.3 Results and discussion 

The DSC curves of linear PCL samples are shown in Figure 4-1.The molecular weight, PDI, and 

thermal properties of all the samples used in this experiment are summarized in Table 4-1. 
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Figure 4-1 DSC curves of linear PCL samples with different molecular weights.   
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Linear PCL samples with weight-average molecular weights (Mw) varying from 1.2 to 774 

kg/mol and the PDI of most PCL samples were between 1.1 and 1.5 except for the 2.1 of 

PCL774k sample. For the thermal properties shown in Table 4-1 and Figure 4-1, there were 

multiple melting peaks for PCL 5.2k, 3.3k, 1.2k and most 4,6arm samples because they were 

synthesized using an ring-opening polymerization while there was one melting temperature for 

other PCL samples, which was reported previously in our lab [3-6]. When the molecular weight 

increased, Tm for PCL increased up to 56.3
o
C for PCL229k. The crystallinity was calculated by 

the equation % / ( ) 135 /c c

m PCL m mcrystallinity H H Where H J g    　 for PCL [2]. 

Table 4-1 Molecular characteristics and thermal properties of the linear, 4 and 6-arm PCL-OH 

PCL-OH  

Polymer 

Mn 

(g/mol) 

Mw  

(g/mol) 
PDI 

Thermal properties 

Tc (°C) Tm,1 (°C) Tm,2 (°C) ΔHm(J/g) χc(%) 

2-773K 365900 773900 2.1  54.1  46.6 34.5 

2-229K 173800 229400 1.3  56.3  50.0 37.1 

2-144K 97700 144200 1.5  56.0  55.5 41.1 

2-135K 91700 135600 1.5  ---  --- --- 

2-69K 46940 69130 1.5  55.4  67.2 49.8 

2-42K 38280 42010 1.1  ---  --- --- 

2-38K 35050 38140 1.1  54.1  69.0 51.1 

2-32K 26550 32230 1.2  53.7  69.3 51.3 

2-23K 17180 23980 1.4  53.4  72.2 53.5 

2-15K 11050 15160 1.4  52.6  71.1 52.7 

2-11K 10460 11850 1.1  52.5  70.8 52.4 

2-9K 6570 9740 1.5  52.2  70.3 52.1 

2-7K 5270 7120 1.4  51.4  70.0 51.9 

2-5K 3470 5200 1.5  44.5  49.5 68.3 50.6 

2-1K 1080 1180 1.1  5.5  25.3 18.7 

4-8K 8450 9680 1.1 16.6 41.1 46.5 77.8 58.5 

4-10K 9250 10300 1.1 21.0 45.8 49.4 76.6 57.5 

4-14K 14200 15700 1.1 24.2 49.7 52.8 75.3 56.3 

4-19K 19400 22900 1.1 25.0 51.6 54.3 80.5 60.0 

4-25K 28100 36600 1.3 31.4 53.6 55.8 78.5 58.5 

6-10K 9990 10900 1.1 15.1 39.8 44.8 76.2 57.9 

6-13K 12800 14300 1.1 21.8 45.1 48.3 75.3 56.8 

6-15K 

6-20K 

6-30K 

14800 
20600 

30900 

16800 
25000 

35600 

1.1 
1.2 

1.2 

21.5 

27.3 

31.6 

42.9 

47.8 

49.2 

48.8 

51.4 

 

78.7 

79.4 

73.7 

58.3 

58.8 

54.6 
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The crystallinity first increased from 18.7% to 53.5% with increasing the weight-average 

molecular weight from 1.2 to 24 kg/mol and then decreased from 24 to 774 kg/mol because it 

was more difficult for PCL samples with sufficiently high molecular weights to reorganize into a 

more ordered structure. Compared with linear ones, the 4 and 6-arm samples had higher 

crystallinities, which were ranging from 54.6% to 60.0% 

  

Figure 4-2 Strain rate dependence on the viscosity of (a) linear PCL samples with high molecular 

weight, (b) linear PCL samples with low molecular weight, (c) 4-arm PCL samples (d) 6-arm 

PCL samples, measured at 140
o
C. 
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Except for some samples with small molecular weights whose stable data could not be collected 

at 140
o
C, zero shear viscosity data of other samples were collected and plotted in Figure 4-2. 

Shear thinning was observed in the liner samples when the molecular weight is over 69K, which 

means with the increase of shear rate, the decrease of zero viscosity were observed. Other sample 

behaved as a very good Newtonian Liquid. The zero-shear viscosity increases with the increase 

of Mw. The increased branches decrease the shear viscosity when the molecular weights are 

same. This is because each arm has fewer segments when the branch number is increased. 
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Figure 4-3 Temperature dependence on zero-shear viscosity of (a) 4-arm samples, (b) 6-arm 

samples and (c) linear samples measured at 140
o
C 
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The temperature dependence on zero-shear viscosity of the 4-arm, 6-arm and linear samples are 

shown in Figure 4-3. From the curves we could see that the curves with the viscosity are 

negatively correlated with the temperature, and at the same temperature, samples with higher 

molecular weight have higher viscosities. 

The molecular weight dependence of zero-shear viscosity of 4arm and 6arm samples at different 

temperatures and the compared results with linear samples at 140
o
C are shown in Figure 4-4. 

The slopes of the molecular weight dependence of viscosity are marked on the curves. As shown 

in the figure, for linear samples, there is a critical molecular weight 7K, after where the 

molecular weight dependence of shear viscosity behaved differently. This is because before the  
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Figure 4-4 Molecular weight dependence on zero-shear viscosity of (a) 4 arm and (b) 6 arm 

samples at different temperatures and the compared results with (c) linear samples at 140
o
C 
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critical molecular weight, it is unentangled region and after this point, the polymer behaves as an 

entangled polymer. 

The power law exponents of the unentangled and entangled regions were 1.0 and 3.5, consistent 

with the experimental findings of 1.08 and 3.45 for the linear polymers. The critical points were 

not observed in the 4 arm curves, more data points at lower molecular weight are needed to 

explore the power law. The critical points were observed at about 15K in the 6 arm curves, with 

a slope of about 1. In the entangled region, 4 arm and 6 arm samples obey a lower dependent 

factor because for star like polymers, the zero shear viscosity depended on the Molecular weight 

of each branch. 

4.4 Conclusion 

The linear samples obey the power law both on entangled and unentangled regions. More data 

points for 4 arm and 6 arm samples are needed to explore the molecular weight dependence in 

the unentangled region. The PCL-CH3 and PCL-COOH samples were also used for the rheology 

tests to explore the functional group influence on polymer segments movements. No big 

differences were observed. 
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Chapter V Cytotoxicity Test and in Vitro Cell Study of the Star-PCL 

Samples Using Smooth Muscle Cells  
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5.1 Introduction  

After new polymers were synthesized, cytotoxicy evaluation should be taken in order to make 

sure the samples could be used for cell study. In this chapter, the cytotoxicity evaluation was 

performed by harvesting the SMCs. In vitro cell attachment and proliferation study were 

performed by harvesting SMCs on crystallized PCL with different functional groups. 

5.2 Experiment 

5.2.1 PCL sample preparation 

All the 50 samples were used to perform the cytotoxicity tests. Before the tests, PCL samples 

were sterilized by immerging into 70% ethanol solution, and then dried in the vacuum dryer. 

Only 4-25K and 6-30K PCL with different functional groups were used for in vitro cell 

attachment and proliferation study. The samples were crystallized at 37
o
C and sterilized by 

exposing under UV light for 12h. 

5.2.2 Smooth Muscle Cells (SMCs) 

Rat Smooth Muscle Cells isolated from adult rats aorta rats could be used for angiogenesis, 

artherosclerosis and cardiovascular research. The cell culture of SMCs were talked about in 

Charles' work [1]. SMCs were cultured in vitro by using culture medium consisting of 

Dulbecco’s Modified Eagle Medium (DMEM), combined with 10% fetal bovine serum (FBS, 

Sera-Tech, Germany) and 1% penicillin/streptomycin (Gibco). Culture medium was placed into 

a polystyrene flask and SMCs were plated. Prior to seeding, the cell suspension was then 

incubated in a 5% CO2, 95% relative humidity incubator at 37
o
C. Subcultures of SMCs were 

performed at approximately 80% confluency. Trypsin with a concentration of 0.025% was used 

to detach the cells from the bottom of the polystyrene flask. 
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5.2.3 Cytotoxicity tests 

The procedures of the cytotoxicity tests were talked about in Lei’s work [2]. Cytotoxicity 

evaluation was performed by harvesting SMCs in a 24-well plate at a density of about 15,000 

cells/cm
2
 in 1mL of primary medium. The suspension wells with a membrane were used to put 

PCL powders, as a result, only culture medium and possible toxic substance could go through the 

membrane. 0.1g sterilized sample was put into each well. The cells were kept in the incubator for 

1, 2, and 4 days. Wells seeded with SMCs at the same density in the absence of complexes were 

used as positive controls and empty wells were used as negative controls. A colorimetric cell 

metabolic assay  (Cell Titer 96 Aqueous One Solution, Promega, Madison, WI) based on the 

MTS tetrazolium compound was used to evaluate the number of viable cells, which could be 

correlated to the UV absorbance at 490 nm measured on a microplate reader (Spectra Max Plus 

384, Molecular Devices, Sunnyvale, CA). 

5.2.4 In vitro cell attachment and proliferation 

SMCs were seeded on the polymer substrates at a density of 1.5 × 10
4 

cells/cm
2
. The negative 

control was the empty TCPS well and the positive control was TCPS seeded with cells. The 

seeded substrates were then incubated for 4 h to determine cell attachment and 1, 2, 4 days to 

determine proliferation. A microplate reader at 490 nm (Spectra Max Plus 384, Molecular 

Devices, Sunnyvale, CA) was used to determine the cell numbers obtained from the adsorption 

values of the MTS assay, (Cell Titer 96 Aqueous One Solution, Promega, Madison, WI) and a 

standard curve constructed from known cell numbers. Culture medium was removed from the 

wells containing SMC seeded substrates and the polymer substrates were washed twice with PBS 

after the cells were cultured in a 5% CO2 and 95% relative humidity atmosphere at 37 °C for 4 h, 

1, 2 and 4 days.  
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For fluorescent imaging, the attached cells were fixed in 4% paraformaldehyde (PFA) solution 

for 10 min. After fixation, the PFA was removed and PBS was used to wash the cells twice. 

Cells were permeabilised with 0.1% Triton X-100 for 10-20 min. The cytoplasm filaments were 

stained with rhodamine-phalloidin (RP) and incubated for 1 h at 37°C. After incubating, 4',6-

diamidino-2-phenylindole (DAPI) was used to stain the cell nuclei. SMC images were acquired 

with an Axiovert 25 light microscope (Carl Zeiss, Germany). Proliferation index (PI) was 

quantified by dividing the cell number at day 4 by the cell number at day 1. 

5.3 Results and discussion 

The normalized cell numbers in the tested wells compared with those in the positive control 

wells after 1, 2 and 4 day are shown in Figure 5-1. From the figure we could see that there was 

no big difference on cell numbers between tested wells and positive control wells. That’s to say, 

all the polymers are not harmful for the SMCs and can be used in cell studies. 

  



www.manaraa.com

58 

 

 

 

4-8 4-10 4-14 4-19 4-25 6-10 6-12 6-15 6-20 6-30
0.0

0.2

0.4

0.6

0.8

1.0

1.2
c

 

 

 

Viability of PCL-COOH 

 Day 1

 Day 2

 Day 4

4-8 4-10 4-14 4-19 4-25 6-10 6-12 6-15 6-20 6-30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Viability of PCL-NH
2

 Day 1

 Day 2

 Day 4
d

8K 10K 14K 19K 25K
0.0

0.2

0.4

0.6

0.8

1.0

1.2
a

 

 

 

Viability of 4arm PCL-OH

 Day 1

 Day 2

 Day 4

10K 12K 15K 20K 30K
0.0

0.2

0.4

0.6

0.8

1.0

1.2
b

 

 

Viability of 6arm-PCL OH

 Day 1

 Day 2

 Day 3

4-8 4-104-144-194-256-106-126-156-206-30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

 

Viability of PCL-CH=CH
2

 Day 1

 Day 2

 Day 4
e

4-8 4-10 4-14 4-19 4-25 6-10 6-12 6-15 6-20 6-30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

 

Viability of PCL-CH
3

 Day 1

 Day 2

 Day 4

f

 

Figure 5-1 Normalized cell numbers after 1, 2 and 4 days for (a) 4-arm PCL-OH (b) 6-arm PCL-

OH (c) PCL-COOH (d) PCL-NH2 (e) PCL-acrylate (f) PCL-CH3 samples. 
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Figure 5-2 SMCs cell attachment and proliferation on crystallized 4arm-25K PCL films. 

 

The cell numbers and the fluorescent images stained with rhodamine-phalloidin (red) and DAPI 

(blue) on functional group end-capping PCL film at days 1, 2, and 4 post-seeding are shown in 

Figure 5-2. Normalized cell attachment at 4h and proliferation index (Day 4 cell number/Day 1 

cell number) are calculated and the results are also shown in Figure 5-2. As the results showed, 

the amino group PCL enhanced both on SMCs attachment and proliferation. The carboxyl and 

arylate group PCL increased the cell attachment a little bit. The methyl groups did not change the 

polymer interaction with cells.  
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Figure 5-3 SMCs cell attachment and proliferation on crystallized 6arm-30K PCL films. 

 

Same trend were observed when 6arm-30K crystallized samples were used as the cell growing 

substrate, cell images, cell numbers, normalized attachment and Proliferation index are shown in 

Figure 5-3. Compared with the results of 4arm-25K, samples, the attachment enhancement is 

more significant. 
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5.4 Conclusion 

According to the cytotoxicity test results, all the studied samples were not toxic and can be used 

in cell study.  

The in vitro cell study showed that the PCL-NH2 samples enhanced both on SMCs attachment 

and proliferation. The PCL-COOH and PCL-acrylate samples increased the cell attachment a 

little bit. The PCL-CH3 did not change the polymer interaction with cells a lot. 

The enhancement of attachment and cell numbers for 6-arm samples are more significant than 

that of 4-arm samples. 

More cell studies could be applied to find out how different molecular weights, differern surface 

morphologies could influence cell behavior and further studies on SMC functions such as focal 

adhesions, integrin/gene/protein expression, and filament could be applied. 
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Chapter VI Conclusion and Further Work 

In chapter II, 4-arm and 6-arm star-like PCL with different molecular weight and functional 

groups were synthesized with structure confirmed by GPC, ATR and NMR. Based on the NMR 

spectra, the conversion percentage of the functional groups could be calculated. The thermal 

properties of the samples were determined by using DSC.  

After the structure were determined, flat samples were prepared by the hot press and the contact 

angle tests of three fluids were performed. Based on the contact angles, surface energies could be 

calculated. 

For further work of  this chapter, X-ray photoelectron spectroscopy (XPS) could be used to 

further determine the density of functional groups on the PCL surfaces. 

In chapter III, different functional group end-capping PCL samples were used to study the 

influence of  functional groups and different crystalline temperature on crystalline morphologies. 

The crystalline morphologies were observed under POM and banded structure were observed 

when the PCL-CH3 and PCL-acrylate samples were crystallized at 50
o
C.  

Formation of banded spherulites can be attributed to polymer lamellar twisting in crystal growth 

induced by the strong surface stress of the lamellae and impeded crystal growth rate. The 

substrate could influence the crystalline morphologies by changing the crystal growth rate. Even 

though no banded structure were observed in my work, this part worth further study to find out 

how could the substrate influence the crystallization.  

In my work, POM images were taken only when the spherulites stopped growing,  crystallization 

kinetics could be studied by taking the images every specific time for further understanding the 

crystalline procedure. Atomic force microscope (AFM) could also be used to further study the 

roughness of the crystallized surface. 
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In chapter IV, the molecular weight and temperature dependence on zero-shear viscosity of 4 and 

6-arm PCL were studied and compared with the linear samples. Most of my 4-arm and 6-arm 

samples are in the entangled region, for further study, more star-like polymers with lower 

molecular weights are needed to explore the molecular weight dependence for branched polymer 

in the unentangled region. 

In chapter V, in vitro cell studies were performed by using SMCs cultured on the crystallized 

PCL films. The amino groups enhanced both on SMCs attachment and proliferation. The 

carboxyl and acrylate groups increased the cell attachment a little bit. The methyl groups did not 

change the polymer interaction with cells very much.  

It was talked about that cell behaviors could be influence by surface mechanics, surface 

morphological and chemical features. In chapter V, only PCL samples with different functional 

groups were used to study the chemical influence. The stiffness of the samples depends on the 

molecular weight. Flat samples with different molecular weight could be prepared to study the 

surface mechanic influence. Samples with different surface morphologies could be prepared by 

changing the crystalline temperature to further study the morphology influence. 

Except for the cell attachment and proliferation, further studies on SMC functions such as focal 

adhesions, integrin/gene/protein expression, and filament could be also applied. 
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